TECHNICAL BULLETIN

alpha° 🗬

SM1193

ALPHA® CVP-390 SAC305- HIGH PERFORMANCE LEAD-FREE

ALLOY SOLDER PASTE FOR AUTOMOTIVE ELECTRONICS

DESCRIPTION

CVP-390 SAC305 solder paste has been developed to provide a wide processing window whilst providing industry leading electro-chemical reliability performance. It is designed for use in Automotive environments where operating temperatures do not exceed 120°C. **ALPHA® CVP-390 SAC305** incorporates a zero-halogen, no-clean solder paste flux system, which provides excellent pin testing properties and contributes to its ability to pass the most stringent automotive test standards.

This product is also designed to enable consistent fine pitch printing capability, down to $180\mu m$ circle printed with $100\mu m$ thickness stencil, making it ideal for use in applications such integrated automotive vision & detection systems =.

FEATURES & BENEFITS

- Long Stencil Life: consistent performance for at least 8 hours of continuous printing without addition of new paste
- Long, High Tack Force Life: ensures high pick-and-place yields, good self-alignment
- Wide Reflow Profile Window: allows best quality solderability of complicated, high density PWB
 assemblies in both air and nitrogen reflow, using ramp and soak profiles, as high as 175 to 185°C
- Reduced Random Solder Ball Levels: minimizes rework and increases first time yield
- Excellent Coalescence and Wetting Performance: coalesced 180µm circle deposit, even at high soak profile environment
- Excellent Solder Joint and Flux Residue Cosmetics: after reflow soldering, even using long/high thermal soaking, without charring or burning
- Reflow Atmosphere: compatible with both Nitrogen and Air atmospheres in reflow
- Halogen Content: Zero Halogen, no halogen intentionally added
- Residue: Excellent Pin Testing property and Pass JIS Copper Corrosion Test

Safe and Environmentally Friendly: Materials comply with RoHS and Halogen-free requirements (see table below), as well as TOSCA & EINECSPRODUCT INFORMATION

Alloys: SAC305 (96.5%Sn/3.0%Ag/0.5%Cu)

SACX Plus™ 0307 SMT (99%Sn/0.3%Ag/0.7%Cu) SACX Plus™ 0807 SMT (98.5%Sn/0.8%Ag/0.7%Cu)

Powder Size: Type 3 (25 - 45µm per IPC J-STD-005)

Type 4 (20 - 38µm per IPC J-STD-005)

Packaging Sizes: 500 gram jars, 6" & 12" cartridges

Flux Gel: Flux gel is available in 10 and 30 cc syringes for rework applications

<u>Lead Free:</u> Complies with RoHS Directive 2002/95/EC.

APPLICATION

Formulated for both standard and fine pitch stencil printing, at print speeds of between 25mm/sec (1"/sec) and 150mm/sec (6"/sec), with stencil thickness of 0.100mm (0.004") to 0.150mm (0.006"), particularly when used in conjunction with ALPHA® Stencils. Blade pressures should be 0.21-0.36 kg/cm of blade (1.25 -1.5 lbs/inch), depending upon the print speed. The higher the print speed employed, the higher the

300 Atrium Drive, Somerset, NJ 08873, USA, 1-800-367-5460, www.alpha.alent.com

an Alent plc Company

blade pressure that is required. The reflow process window will give high soldering yield with good cosmetics and minimized rework.

HALOGEN STATUS

ALPHA® CVP-390 is a Zero Halogen product and passes the standards listed in the Table below:

Halogen Standards						
Requirement	Test Method	Status				
< 1000 ppm Br, Cl, F in solder material solids		Pass				
Post Soldering Residues contain < 900 ppm each or total of < 1500 ppm Br or CI from flame retardant source	< 1500 ppm Br IM EN 14582 Pa					
Post soldering residues contain < 1000 ppm Br or Cl from flame retardant source		Pass				
	Requirement < 1000 ppm Br, Cl, F in solder material solids Post Soldering Residues contain < 900 ppm each or total of < 1500 ppm Br or Cl from flame retardant source Post soldering residues contain < 1000 ppm Br or Cl from flame retardant	Requirement Test Method < 1000 ppm Br, Cl, F in solder material solids Post Soldering Residues contain < 900 ppm each or total of < 1500 ppm Br or Cl from flame retardant source Post soldering residues contain < 1000 ppm Br or Cl from flame retardant				

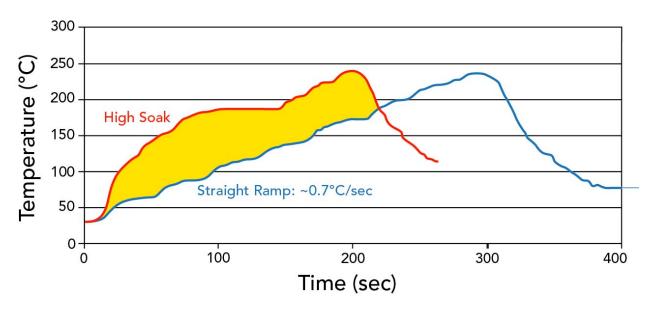
CATEGORY	RESULTS	PROCEDURES/REMARKS
CHEMICAL PROPERTIES		
Activity Level	ROL0	IPC J-STD-004B
Halide Content	Halide free (by titration).	IPC J-STD-004B
Fluoride Spot Test	Pass	JIS-Z-3197-1999 8.1.4.2.4
Halogen Test	Pass, Zero Halogen - No halogen intentionally added	EN14582, by oxygen bomb combustion, Non-detectable (ND) at < 50 ppm
Ag Chromate Test	Pass	IPC J-STD-004B
Ag officinate rest	Pass	JIS-Z-3197-1999 8.1.4.2.3
Copper Mirror Test	Pass	IPC J-STD-004B
Copper Militor Test	Pass	JIS-Z-3197-1999 8.4.2
Copper Corrosion Test	Pass (No evidence of Corrosion)	IPC J-STD-004B
Copper Corrosion Test	Pass (No evidence of Corrosion)	JIS-Z-3197-1999 8.4.1
ELECTRICAL PROPERTIES		
Water Extract Resistivity	13,400 ohm-cm	JIS-Z-3197-1999 8.1.1
SIR (7 days, 40°C/90%RH, 12 V bias)	Pass	IPC J-STD-004B TM-650 2.6.3.7 (Pass ≥ 1 x 10 ⁸ ohm)
Electromigration (Bellcore 500 hours @ 65°C/85%RH 10V)	Pass	Bellcore GR78-CORE (Pass=final > initial/10)
JIS Electromigration (1000 hours @ 85°C/85%RH 48V)	Pass	JIS-Z-3197-1999 8.5.4

PHYSICAL PROPERTIES

Color	Clear, Colorless Flux Residue		
Tack Force vs. Humidity	Pass, > 100gf over 24 hours at 25%, 50% and 75 % Relative Humidity Pass, Change of <1g/mm2	JIS Z-3284-1994, Annex 9	
	over 24 hours at 25% and 75 % Relative Humidity	IPC J-STD-005 TM-650 2.4.44	
Tack Force at 32°C/35%RH, measured after 0, 1, 2, 3 & 4 hours print duration	> 100gf	JIS Z-3284-1994, Annex 9	
	88.8% metal load, Type 4 designated M17 for printing Viscosity (Typical) 1700 poise at 10 RPM Malcom		
Viscosity	89% metal load, Type 4 designated M20 for printing Viscosity (Typical) 2000 poise at 10 RPM Malcom	Malcom Spiral Viscometer; J-STD-005	
Viscosity Stability at 25°C for 20 days	Pass	Malcom Spiral Viscometer	
Continuous Viscosity Measurement at 25°C for 24 hours	Pass	Malcom Spiral Viscometer	
Coalescence Test	Able to reflow at < 200 µm Cu pad circle size	Internal	
Solder Ball	Preferred	IPC J-STD-005 TM-650 2.4.43	
Spread	80%	JIS-Z-3197-1999 8.3.1.1	
Stencil Life	>8 hours	@ 50% RH 23°C (74°C)	
Cold Slump	No bridge for 0.2 mm space	JIS-Z-3284-1994 Annex 7	
	Not tested	IPC J-STD-005 TM-650 2.4.35	
Hot Slump	No bridge for 0.4 mm space	JIS-Z-3284-1994 Annex 8	
	Pass	IPC J-STD-005 TM-650 2.4.35	
Dryness Test (Talc)	Pass	JIS-Z-3197-1999 8.5.1	

SAFETY

While the **ALPHA**® **CVP-390** flux system is not considered toxic, its use in typical reflow will generate a small amount of reaction and decomposition vapors. These vapors should be adequately exhausted from the work area. Consult the MSDS (available at www.alpha.alent.com) for additional safety information.


STORAGE

ALPHA® CVP-390 should be stored in a refrigerator upon receipt at 0 to 10°C (32-50°F). **ALPHA® CVP-390** should be permitted to reach room temperature before unsealing its package prior to use (see handling procedures on page 4). This will prevent moisture condensation build up in the solder paste.

STORAGE AND HANDLING	PRINTING	REFLOW (see Fig. 1)	CLEANING
1. Refrigerate to guarantee stability @ 0-10°C (32-50°F). When stored under these conditions, the shelf life of CVP-390 is 6 months. 2. Paste can be stored for 2 weeks at room temperature up to 25°C(77°F) prior to use 3. When refrigerated, warm up paste container to room temperature for up to 4 hours. Paste must be 19°C (66°F) before processing. Verify paste temperature with a thermometer to ensure paste is at 19°C (66°F) or greater before set up of printer. 4. Paste can be manually stirred before use. A rotating/Centrifugal force mixing operation is not required. If a rotating/centrifugal force mixing is used, 30 - 60 seconds at 300 RPM is adequate. 5. Do not remove worked paste from stencil and mix with unused paste in jar. This	STENCIL: Recommend ALPHA® CUT™, ALPHA® NICKEL-CUT™, ALPHA® TETRABOND™, or ALPHA® FORM stencils @ 0.100mm - 0.150 mm (4-6 mil) thick for 0.4 - 0.5 mm (0.016" or 0.020") pitch. Stencil design is subject to many process variables. Contact your local Cookson Electronics stencil site for advice. SQUEEGEE: Metal (recommended) PRESSURE: 0.21 - 0.36 kg/cm of blade (1.25 -2.0 lbs/inch) SPEED: 25 - 150 mm per second (1 - 6 inches per second). PASTE ROLL: 1.5-2.0 cm diameter and make additions when roll reaches 1-cm (0.4") diameter (min). Max roll size will depend upon blade. STENCIL RELEASE SPEED: 1 - 5 mm/sec. LIFT HEIGHT: 8 - 14mm (0.31- 0.55")	ATMOSPHERE: Clean-dry air or nitrogen atmosphere. PROFILE (SACX Alloys): Straight Ramp: 0.7°C/sec & 1.3°C/sec ramp profiles, 45 - 60 TAL. Soak: 155 – 175 °C, 60 to 100 sec soak profiles have been determined to give optimal results. If required, good results are also achievable with high soak temperature profiles of 175 – 185°C for 60 s. Typical peak temperature is 235 to 245°C. Note 1: Keeping the peak temperature below 241°C may reduce the number and size of BGA and QFN voids. Note 2: Refer to component and board supplier data for thermal properties at elevated temperatures. Lower peak temperatures require longer TAL for improved joint cosmetics.	ALPHA CVP-390 residue is designed to remain on the board after reflow. If reflowed residue cleaning is required, Vigon A201 (in line cleaning), Vigon A 250 (Batch Cleaning) or Vigon US (Ultrasonic Cleaning) are recommended. Vigon is a registered trademark of Zestron Misprints and stencil cleaning may be done with IPA, ALPHA SM-110E, ALPHA SM-440, and Bioact™ SC-10E cleaners. Bioact is a registered trademark of Petroferm.
will alter the rheology of unused paste.			
6. These are starting recommendations and all process settings should be reviewed independently.			

Fig 1: ALPHA® CVP-390 SAC305 Typical Reflow Profile

General Reflow Profile Guidelines			
Parameter	Guideline	Additional Information	
Atmosphere	Air or N2		
SAC305, SAC405,	217 -225°C		
SACX Plus™ 0807 SMT	Melting Range		
CACV Divo IM 0207 CMT	217 - 227°C		
SACX Plus™ 0307 SMT	Melting Range		
Setting Zone*	Optimal Dwell Period	Extended window	
40°C to 225°C	2:30 to 4:30 min.	< 5:00 min.	
170°C to 225°C	0:30 to 2:00 min	< 2:30 min.	
120°C to 225°C	1:25 to 3:00 min.	< 3:30 min.	
TAL (217 - 225°C)	45 - 90 sec.	Not Recommended	
Peak temperature	235 - 245°C	Compatible with most common surface finishes. (Entek HT, Entek OM, Alpha Star, ENIG, SACX HASL).	
Joint cool down rate	1 - 6°C/second	Recommended to prevent surface cracking issues.	

^{*} Above recommendations are for SAC305. For alternative alloys, please follow the liquidus temperature of the respective alloy.